Direct detection of 4q35 rearrangements implicated in facioscapulohumeral muscular dystrophy (FSHD).
نویسندگان
چکیده
The p13E-11 probe has been shown to detect DNA rearrangements in sporadic and familial cases of FSHD. Its use, however, has been hampered by the fact that it detects at least two pairs of EcoRI alleles, one derived from the 4q35 region (D4F104S1), the other from 10q26 (D10F104S2). We have cloned p13E-11 EcoRI fragments from the 4q35 and 10q26 subtelomeric regions and shown the presence of several restriction site differences within the KpnI tandem repeat units. The two loci present a different distribution of restriction sites for the enzyme BlnI which allows differential cleavage of the KpnI units derived from 10q26, leaving intact the 4q35 pair of alleles. This method of differential restriction greatly facilitates the interpretation of Southern blots obtained from affected and unaffected subjects, with an important improvement in reliability for diagnosis and genetic counselling. In addition, this method can be used to investigate the molecular mechanism of the 4q35 rearrangement implicated in the disease and to ascertain whether the rearrangement is because of interchromosomal exchange between 4qter and 10qter KpnI repeats.
منابع مشابه
Facioscapulohumeral Muscular Dystrophy: More Complex than it Appears
Facioscapulohumeral muscular dystrophy (FSHD) has been classified as an autosomal dominant myopathy, linked to rearrangements in an array of 3.3 kb tandemly repeated DNA elements (D4Z4) located at the 4q subtelomere (4q35). For the last 20 years, the diagnosis of FSHD has been confirmed in clinical practice by the detection of one D4Z4 allele with a reduced number (≤8) of repeats at 4q35. Altho...
متن کاملAtypical phenotypes in patients with facioscapulohumeral muscular dystrophy 4q35 deletion.
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is associated with a deletion on chromosome 4q35. Recent studies have shown that this deletion is found in patients with other phenotypes in addition to those with the classic Landouzy-Dejerine FSHD phenotype. OBJECTIVE To examine patients with atypical phenotypes and an FSHD deletion on chromosome 4q35. DESIGN Clinical characterizati...
متن کاملDirect interplay between two candidate genes in FSHD muscular dystrophy
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common neuromuscular disorders. The major form of the disease (FSHD1) is linked to decrease in copy number of a 3.3-kb tandem repeated macrosatellite (D4Z4), located on chromosome 4q35. D4Z4 deletion alters chromatin structure of the locus leading to aberrant expression of nearby 4q35 genes. Given the high variability in disease o...
متن کاملA Long ncRNA Links Copy Number Variation to a Polycomb/Trithorax Epigenetic Switch in FSHD Muscular Dystrophy
Repetitive sequences account for more than 50% of the human genome. Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease associated with reduction in the copy number of the D4Z4 repeat mapping to 4q35. By an unknown mechanism, D4Z4 deletion causes an epigenetic switch leading to de-repression of 4q35 genes. Here we show that the Polycomb group of epigenetic repressors ...
متن کاملChromatin loop domain organization within the 4q35 locus in facioscapulohumeral dystrophy patients versus normal human myoblasts.
Fascioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder linked to partial deletion of integral numbers of a 3.3 kb polymorphic repeat, D4Z4, within the subtelomeric region of chromosome 4q. Although the relationship between deletions of D4Z4 and FSHD is well established, how this triggers the disease remains unclear. We have mapped the DNA loop domain cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of medical genetics
دوره 33 5 شماره
صفحات -
تاریخ انتشار 1996